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ABSTRACT

Anewmorphing-based technique is proposed for the verification of precipitation forecasts for which the location

error can be described by a spatial shift. An adaptation of the structural similarity index measure (SSIM) of image

processing to the precipitation forecast verification problem, called the amplitude and structural similarity index

(ASSIM), is also introduced. ASSIM is used to measure both the convergence of the new morphing algorithm,

which is an iterative scheme, and the amplitude and structure component of the forecast error. The behavior of the

proposed technique, which could also be applied to other forecast parameters with sharp gradients (e.g., potential

vorticity), is illustrated with idealized and realistic examples. One of these examples examines the predictability of

the location of precipitation events associated with winter storms. It is found that the functional dependence of the

average magnitude of the location error on the forecast lead time is qualitatively similar to that of the root-mean-

square error of the fields of the conventional atmospheric state variables (e.g., geopotential height). Quantitatively,

the averagemagnitude of the estimated location error is about 40km at initial time, 110 km at day 1, 250 km at day

3, and 750 km at week 1, and it eventually saturates at about week 2.

1. Introduction

In a pair of papers, Keil and Craig (2007, 2009; here-

after KC07 and KC09, respectively) introduced a

morphing-based, nonparametric optical flow technique

(Marzban et al. 2009) for the verification of precipitation

forecasts. Their technique was most recently used by

Geiß (2015) to examine the forecast cases of the Me-

soscale Verification Intercomparison over Complex

Terrain (MesoVICT) research project (Dorninger et al.

2013). In an earlier paper (Han and Szunyogh 2016;

hereafterHS16), we proposed some algorithmic changes

to the morphing technique of KC07 and KC09 and also

defined themorphing-based estimate of the components

of the forecast error differently. The primary motivation

for the changes we introduced was to improve the per-

formance of the technique in situations where the pre-

cipitation in the verification region is produced by a single

weather event, such as the passage of the frontal systemof

an extratropical cyclone, a tropical cyclone, or a form of

organized convection. In such situations, the error in the

prediction of the location of the precipitation system is

well defined and can be described by a spatial shift.

The purpose of the present paper is to introduce fur-

ther algorithmic changes to the morphing technique in

order to improve its efficiency in matching the forecast

and verifying precipitation features. The paper also

introduces a measure of the similarity between a pair of

precipitation fields, which we call the amplitude and

structural similarity index measure (ASSIM). ASSIM is

used both to define the convergence criterion for the re-

vised morphing technique, which is now an iterative al-

gorithm, and tomeasure the amplitude and structure error

of the forecasts. The formal definition of ASSIM derives

from that of the universal quality index (UQI) of Wang

and Bovik (2002), sometimes called the Wang–Bovik in-

dex. We call the measure ASSIM, in part to acknowledge

its formal similarity to the best-known variant of the

Wang–Bovik index, the structural similarity index mea-

sure (SSIM;Wang et al. 2004;Wang and Bovik 2009), and

in part to emphasize that it accounts for both the ampli-

tude and the structure error of precipitation forecasts.

The structure of the paper is as follows. Section 2 sum-

marizes the morphing-based technique of HS16, describes

the proposed changes to the technique, and introduces

ASSIM. Section 3 illustrates the proposed verification

approach with the help of idealized and realistic test cases.

Section4 is anapplicationof theproposed verification scheme

to the assessment of the predictability of precipitation eventsCorresponding author: Fan Han, hanfan5598@gmail.com
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associatedwithwinter storms.Anextensionofourverification

technique to ensemble forecasts of the same winter storms is

presented in Han and Szunyogh (2018). Section 5 offers our

conclusions.

2. The proposed verification technique

The proposed verification technique treats all pre-

cipitation in the verification domain as part of a single

precipitation system. We introduce the technique in

three steps. First, we briefly describe the basic pyramid

matching algorithm of KC07 and KC09 (section 2a).

Then, we summarize the changes that HS16 made in the

implementation of the algorithm and the interpretation of

the morphing results (section 2b). Finally, we introduce a

new high-level algorithm, which uses the HS16 im-

plementation of the pyramid matching algorithm as a

lower-level algorithmic component (section 2c). We con-

sider this high-level algorithm and the introduction of

ASSIM (section 2d) the most important novel aspects of

the present study.

a. The pyramid matching algorithm

Assume that the precipitation fields are represented

by a collection of d 3 d elementary pixels: each pixel

represents the areal mean of the total precipitation for

the pixel for a specific time interval. Given a forecast

precipitation field Pf and a corresponding verifying

analysis field Pa, the goal is to morph the image of Pf

into an approximate image P̂f of Pa. The morphing is

carried out by computing a morphing vector for each

(elementary) pixel of Pf that moves the pixel to its new

location in the morphed image. If no other pixel moves

into the original location of the pixel, a new zero pixel is

placed at its original location. The vector field defined by

the morphing vectors is an optical flow.

The number of pyramid levels F, the free parameter of

the algorithm, is called the subsampling parameter. At

level k (k5F, F2 1, . . . , 0) of the algorithm, the fore-

cast and the verifying precipitation fields are coarse

grained by averaging 2k 3 2k (elementary) pixels of both

fields. Then, each pixel of the coarse-grained forecast

image is shifted by 0, 1, and2 1 position in both the

zonal (x) and meridional (y) directions. The dx zonal

and dy meridional components of the morphing vector

dX are chosen to be the pair of values of 0, 1, and2 1

that minimizes the absolute value of the difference

between the coarse-grained forecast pixel and the

coarse-grained verifying analysis pixel. (The same dX is

assigned to all 2k 3 2k elementary pixels that make up a

coarse-grained pixel, but dX can be different for the

different coarse-grained pixels.) The procedure is re-

peated until its completion for the last level (level 0), at

which the coarse-grained pixels are identical to the el-

ementary pixels (20 3 20 5 1). The maximum total dis-

tance that an elementary pixel of the forecast field can

move as the result of morphing in either direction is

2F 3 d.

b. The morphing technique of HS16

There were a number of important differences in the

technical details of the implementation of the pyramid

matching algorithm by KC07 and KC09 versus HS16. In

particular, unlike KC07 and KC09, HS16

1) imposed a constraint at the top level (k 5 F) of the

pyramid to prevent moving pixels of Pf in which the

precipitation was not likely to be related to a pre-

cipitation feature of Pa (section 2c of HS16);

2) merged elementary pixels that arrived at the same

location in order to preserve the total precipitation;

and

3) did not require the specification of F, as it chose the

optimal value of F based on Pf and Pa (section 3b

of HS16).

The technique of the present paper (section 3c) re-

tains properties 1 and 2 of HS16. As for property 3, it

should be noted that while the technique of HS16 did

not require the specification of F, it required the speci-

fication of the maximum allowable value of F, Fmax. The

main motivation to cap the value of Fwas twofold. First,

it limited the distance Lmax 5 2Fmax 3 d in both the zonal

and meridional directions, within which precipitation

features could be consideredmatching. Second, it reduced

the likelihood of the presence of multiple precipitation

systems within the search distance. Limiting the value of

F, however, had an unintended consequence: it led to an

underestimation of the location error in situations where

only part of the forecast feature was within distance Lmax

from the verifying feature. In section 2c, we will propose a

number of modifications to the morphing technique of

HS16 to reduce the effects of this undesirable behavior of

the technique. The proposed technique is also computa-

tionally more efficient than that of HS16, which is an im-

portant advantage when a large number of cases has to be

processed.

Besides changes to the implementation of the pyramid

matching algorithm, HS16 also used the output of the

algorithm (themorphing vectors) differently thanKC07and

KC09 to define the components of the forecast error.While

KC07 and KC09 defined the location error by the mean of

the absolute value of the morphing vectors, HS16 defined

the location error by the mean of the morphing vectors.

That is, in practical terms, while HS16 measured the loca-

tion error by only the translational component of the optical

flow, KC07 and KC09 considered the nontranslational
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components also part of the location error. HS16 argued

that some of those components (e.g., the divergent compo-

nent) indicated an error in the structure rather than the loca-

tionof theprecipitation feature,while someother components

were pure artifacts of the pyramid matching algorithm.

Another important difference between the error mea-

sures of HS16 and KC07 and KC09 was that the measure

of HS16 had three components, while the measures of

KC07 and KC09 had only two components. In particular,

HS16 defined a structure and amplitude error component

in addition to the location error component, similar to

Wernli et al. (2008), which was computed after a correc-

tion for the location error by shifting Pf . In contrast,

KC07 and KC09 measured the nonlocation errors by a

single residual error term.

In the measure proposed by the present paper, the lo-

cation error is defined as inHS16, except that themorphing

vectors are computed differently, while the structure and

amplitude error component is defined differently.

c. The modified morphing technique

The steps of the proposed algorithm are the following:

1) Filtering. Prepare a filtered image P
f
filtered of Pf by

replacing each nonzero pixel ofPf that is at leastLmax

pixels apart from the nearest nonzero pixel of Pa in

either direction by a zero pixel. This step is applied to

the elementary pixels.

2) Morphing. Use the pyramid matching algorithm to

morph P
f
filtered into an approximate image P̂f of Pa to

obtain the field of morphing vectors dXi,j, where

i5 1, 2, . . . , M and j5 1, 2, . . . , N identify the location

of a pixel of Pf
filtered in the x and y direction, respectively.

3) Shifting. Compute the mean,

dX
mean

5
1

n
�
M

i51
�
N

j51

dX
i,j
, (1)

of the morphing vectors, where n is the number of

nonzero pixels of Pf
filtered. Round the dx

mean
and dy

mean

components of dX
mean

to the nearest integers, and

shift all nonzero pixels of Pf by dX
mean

. [Note that

dX
mean

is a pure translational (constant) vector field

that has no divergent, rotational, or deformation

component.]

4) Iteration. Replace Pf by the shifted field and repeat

steps 1–3 until the shifted field matches Pa as closely

as possible. A formal criterion for ‘‘matching Pa as

closely as possible’’ will be provided in section 2d.

The key modification of the morphing process is the

repeated (iterative) application of the pyramidmatching

algorithm and the shift vector dXmean. (In HS16, the

forecast feature was shifted by dXmean only once, after

the completion of the morphing process, as it was part of

the computation of the measure of the structure error

rather than the morphing technique.) The final shifted

forecast field dXfinal can be equivalently computed by

applying the sumof dXmean from all iterations to the pixels

of the original forecast fieldPf . Because dXfinal is a sum of

constant vector fields, it is itself a constant vector field that

shifts all elementary pixels of Pf to the same distance and

in the same direction. While this algorithm still requires

prescribing Fmax, it can move pixels to distances signifi-

cantly longer than Lmax. This feature is highly advanta-

geous when the problem at hand is to estimate the large

errors of medium- and long-range forecasts.

d. ASSIM

As mentioned earlier, ASSIM is an adaptation of the

image quality measure UQI (Wang and Bovik 2002) to

the precipitation forecast verification problem. We use

ASSIM to

d provide a formal definition of ‘‘matching Pa as closely

as possible given Pf ’’ in step 4 of the morphing

technique (section 2c),
d measure the amplitude and structure error, and
d match forecast and analysis features.

For a pair of precipitation fields P1 and P2, UQI is

U(P1,P2)5 [U
1
(P1,P2)]a3 [U

2
(P1,P2)]b3 [U

3
(P1,P2)]g,

(2)

where a, b, and g (a1b1 g5 1) are user-defined pa-

rameters. The larger the one of these parameters, the

larger the relative weight of the associated component in

the index. The functions U1(P
1, P2), U2(P

1, P2), and

U3(P
1, P2) are defined by

U
1
(P1,P2)5

2m
1
m
2

m2
1 1m2

2

, (3)

U
2
(P1,P2)5

2s
1
s
2

s2
1 1s2

2

, (4)

U
3
(P1,P2)5

s
12

s
1
s
2

, (5)

where U1(P
1, P2) is a measure of the similarity between

the amplitudes of P1 and P2, U2(P
1, P2) is a measure of

the similarity between the variances (spatial variability)

of P1 and P2, and U3(P
1, P2) is a measure of the point-

wise linear correspondence between P1 and P2.

The term [U1(P
1,P2)]a is a measure of the amplitude

error, and the product [U2(P
1,P2)]b3 [U3(P

1,P2)]g is a

measure of the structure error;U(P1, P2) always takes a

value in the closed interval [1, 21], and when P1 and P2

are identical, U(P1, P2)5 1. UQI measures the same
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three aspects of the difference between P1 and P2 as the

root-mean-square (RMS) error, but it better reflects

human visual perception. UQI and SSIMwere originally

introduced as objective measures of perceptual image

quality. By adapting a UQI-based measure of the simi-

larity, rather than using the RMS difference, we hope to

achieve a better agreement with the assessment of hu-

man experts about the similarity of the two fields.

We define ASSIM by

D(P1,P2)5 [D
amp

(P1,P2)]a3 [D
var
(P1,P2)]b

3 [D
cor
(P1,P2)]g , (6)

where the three components are

D
amp

(P1,P2)5

(
1, if m

1
1m

2
, « ,

U
1
(P1,P2), otherwise;

(7)

D
var
(P1,P2)5

(
1, if s2

1 1s2
2 , «2 ,

U
2
(P1,P2), otherwise;

(8)

D
cor
(P1,P2)5

8><
>:

1, if s
1
ors

2
, « ,

U
3
(P1,P2), otherwise, if s

12
$ 0,

0, otherwise, if s
12
, 0:

(9)

The parameter « is a prescribed small threshold value,

below which the estimates of the statistical parameters,

which are based on computer-generated precipitation

fields, should be considered zero. When ASSIM is used

as a measure of forecast error, P1 is a forecast, and P2 is

the verifying analysis.

There are two differences between the definitions of

ASSIM and UQI. First, they treat the special cases

m1 5m2 5 0 and s1 5s2 5 0 differently: unlike UQI,

ASSIM has no singularity for these special cases. We

note that SSIM (Wang et al. 2004) was also introduced to

remove the singularity associated with the same special

cases by adding a small additive constant to both the nu-

merator and the denominator of the right-hand side of Eqs.

(3)–(5). We choose a different approach to remove the

singularity because both m1 5m2 5 0 and s1 5s2 5 0

have a clear interpretation in the context of precipitation

fields: the former is the case of no precipitation in either

field, while the latter is the case of spatially uniform pre-

cipitation in both fields. In the context of forecast verifica-

tion, the former is a perfect prediction of the amplitude,

while the latter is a perfect forecast of the spatial variability.

The second difference between ASSIM and UQI

is that in the definition of Dcor(P
1, P2), the negative

correlation values s12 are replaced by zeros. One moti-

vation for this modification is the convention of mete-

orology to define skill scores, such that they take a value

in the closed interval [1, 0], with one indicating a perfect

forecast and zero a forecast with no skill. Another, more

important, motivation is to ensure that a lower value of

themeasure indicates a poorer forecast. If negative values

of Dcor(P
1, P2) were allowed, this requirement would

not be satisfied, because for a negative value of

Dcor(P
1, P2), a more accurate forecast of the amplitude

or the variance (a larger value of Damp(P
1, P2) or

Dvar(P
1, P2)) would result in a smaller value (a negative

number with a larger absolute value) of D(P1, P2).

Similar to UQI (Wang and Bovik 2002) and SSIM

(Wang et al. 2004), ASSIM satisfies the following

conditions:

d Symmetry: D(P1, P2)5D(P2, P1).
d Boundedness: 0#D(P1, P2)# 1.
d Unique maximum: D(P1, P2)5 1, if and only if

P1
i,j 5P2

i,j for i5 1, . . . , M, j5 1, . . . , N.

When ASSIM is used for forecast verification, a location

error reduces ASSIM because it reduces Dcor(P
f , Pa).

Thus, a morphed forecast field P̂f matches Pa as closely as

possible, given Pf , when D(P̂f , Pa) takes its maximum,

given Pf and Pa. In practical terms, the iterations of the

morphing technique can be stopped once an iteration fails

to increaseASSIMbymore than aprescribed small value n.

Finally, we note that in the atmospheric sciences, UQI

was considered before as a similarity index by Venugopal

et al. (2005) andMo et al. (2014). In particular, Venugopal

et al. (2005) combined the components U1(P
1, P2) and

U2(P
1, P2) with a Hausdorff measure of the distance be-

tween the locations of precipitation features to define a

newmeasure for the verification of precipitation forecasts.

They did not useU3(P
1, P2) because their goal, similar to

ours, was to separate the amplitude and structure error1

from the location error, and as they observed,U3(P
1, P2)

is affected by both types of errors. They noted that

U3(P
1, P2) could be used tomeasure the structure error if

there were an objective technique to find the shift that

maximizes the similarity between the two features to be

compared. In essence, our morphing technique is such

an objective technique, allowing for the inclusion of

U3(P
1, P2) in the measure of the structure error.

3. Illustration of the verification technique

This section illustrates the behavior of the proposed

verification technique by applying it to an idealized

case of HS16, idealized and realistic cases of the Spa-

tial Verification Methods Intercomparison Project

(ICP) (Ahijevych et al. 2009), and realistic cases of the

1 They referred to the amplitude and structure error collectively

as amplitude error.
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MesoVICT project. In our calculations, we assume

that the three properties of the amplitude and struc-

ture errors are equally important for the hypothetical

forecast user by choosing the values of the parameters

in ASSIM to be a5b5 g5 1/3. The values of n and

« are, respectively, chosen to be 0.01 and 0.1 in all

examples.

a. Idealized case of HS16

This case includes a series of idealized forecasts with

increasing location error. The precipitation feature is an

8 3 8 pixel square, located in the bottom-left corner of

the verification region (Fig. 1). The series of simulated

forecasts is generated by gradually shifting the pre-

cipitation feature ofPf (one pixel at a time) in both the x

and y directions. The panels of Fig. 1 illustrate the effect

of each step of the first two iterations of the morphing

technique for the forecast, in which the precipitation

feature is misplaced by 12 pixels in both directions. In

this calculation, we make the choice Fmax 5 3, and the

iteration is stopped once ASSIM becomes 1. The first

filtering step (top-left panel) filters the 3/4 part of the

forecast precipitation feature that is outside of the

search region, that is, beyond a Lmax 5 2Fmax 5 8 pixel

distance from the border of the analysis feature in either

the x or y direction. The first application of the pyramid

matching algorithm (top middle) moves the remaining

1/4 of the forecast precipitation feature toward the

verifying precipitation feature, while the first shift step

(top right) moves the entire forecast precipitation

feature into the search region. The steps of the second

iteration (bottom panels) result in a perfect match of the

two precipitation features.

Figure 2 illustrates the change in the behavior of the

morphing technique due to the proposed modifications.

It shows that when the forecast feature is misplaced by

2Fmax 5 8 or fewer pixels, both techniques capture the

location error correctly. But, while the modified tech-

nique provides a correct estimate of the location error

up to a displacement of 15 pixels, the original technique

underestimates the location error at a displacement of

nine or more pixels because it cannot move those parts

of the precipitation feature that are displaced by more

than 2Fmax pixels (Fig. 3).

FIG. 1. Illustration of the steps of the proposed morphing technique for an idealized case in which the forecast has only location error (see

section 3a for details). In this example, the forecast feature is misplaced by 12 pixels in both directions.
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b. ICP cases

1) IDEALIZED CASES

The proposed verification scheme is applied to the five

idealized ICP examples. In these examples, whose

graphical illustration can be found in Ahijevych et al.

(2009), both the forecast and analysis features have el-

liptical shapes. The forecast errors are errors in the lo-

cation, area, and/or aspect ratio of the ellipsoids. Table 1

summarizes the estimates of dXfinal, ASSIM, and the

three components of ASSIM for these examples. The

results show that our technique can distinguish among

the three general types of error present in all cases.

1) When the forecasts only have location error (cases 1

and 2), the verification technique does a perfect job:

the estimate of the location error dXfinal equals the

actual displacement, and both ASSIM and its com-

ponents correctly indicate that there is no amplitude

or structure error.

2) When both location and structure error are present

(cases 3, 4, and 5), the estimates of the location error

are slightly less accurate. In particular, while the

technique correctly detects that there is no location

error in the y direction for cases 3 and 4, it estimates

the location errors in the x direction with a relative

error of 3.2%.

3) When there is no error in the amplitude and the only

source of structure error is an error in the aspect ratio

(case 4), the components of ASSIM indicate correctly

that there is no error in the amplitude or variance. In

addition, the error in the aspect ratio is captured by

the component Dcor, as it leads to less than perfect

pointwise correlation. Unlike the verification tech-

niques of Lack et al. (2010) and Lakshmanan and

Kain (2010), it cannot detect specifically that the

structure error is an error in the orientation of the

forecast feature.

Table 2 ranks the forecasts of the five idealized cases

based on different verification metrics. The first six rows

show the rankings with respect to six modern verifica-

tion metrics that can detect location error (Ahijevych

et al. 2009; Davis et al. 2009; Lack et al. 2010; Keil and

Craig 2009; Gilleland 2011; Lakshmanan and Kain 2010;

Zhu et al. 2011), while the last three rows show results

for our verification technique. For the preparation of

this table, ASSIM was computed in two different ways:

D0 is ASSIM before the correction for the location er-

ror, and D is ASSIM after correction for the location

error. We use the results of Table 2 to address three

questions posed by Ahijevych et al. (2009).

(i) Does case 1 score better than case 2, and is the
error correctly attributed to displacement?

Except for the traditional metrics and the two metrics

based on ASSIM, the metrics of Table 2 indicate the

‘‘forecast’’ of case 1 is better than that of case 2. Except for

the displacement and amplitude score (DAS; Keil and

Craig 2009), for which the location error is not correctly

detected in case 2, the better scores and ranks for case

1 are due to the correct detection of the presence of a

smaller location error in case 1. This indicates that when

location error is the only source of error present, most

modern techniques (e.g., neighborhood, object-based, and

morphing-based methods) are able to detect the location

error and discriminate among cases with different magni-

tudes of the location error. The results for ASSIM support

our argument that ASSIM should be computed after the

correction of the location error and only be used as a

component of a multivariate measure that has another

component to measure the location error.

(ii) Is themethod sensitive to the increasing frequency
bias in case 3 and case 5?

Here, the term ‘‘increasing frequency bias’’ refers to

the property of cases 3 and 5 that precipitation is fore-

cast at more locations than observed. To be precise, the

forecast features of cases 3 and 5 are stretched in the x

direction, such that they lead to a frequency bias, which

is larger in case 5 than case 3. There is also a 125-points

FIG. 2. The estimates of the displacement errors for the series of

simulated forecasts described in section 3a that were obtained by

the technique of HS16 (black), the first iteration of the proposed

modified technique (blue), and the proposed modified technique

(red).
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location error in both cases. A major source of difficulty

for the verification techniques in this comparison is that

the forecast and verifying feature partially overlap in case

5 because of the larger frequency bias, which somewhat

masks the location error. The metrics Method for Object-

based Diagnostic Evaluation (MODE; Davis et al. 2009),

DAS, jdXfinalj, and ASSIM indicate, incorrectly, that the

forecast of case 5 is better than that of case 3. In the case of

jdXfinalj, it indicates that the forecast of case 5 is better than
that of case 3 due to a small error in the estimate of the

location error for case 3. This result shows that the location

error should only be used as a component of amultivariate

measure when the goal is to measure overall forecast

quality. The results also support our earlier argument that

while ASSIM should not be used as a measure of forecast

quality without a prior correction for the location error, it

can correctly discriminate among cases of different fre-

quency bias after a correction for the location error.

A more complex comparison is between cases 2 and 5:

the forecast feature of case 2 is identical to the verification

feature, while the forecast feature of case 5 has a large

frequency bias, but case 2 has a larger location error. Five

out of the nine metrics (MODE, Baddeley’s D, metry,

jdXfinalj, and ASSIM with no correction of the location

error) indicate that the forecast of case 5 is better than the

forecast of case 2. This result demonstrates that while it is

more convenient to measure forecast performance by a

scalar than a multivariate score, a scalar score often pro-

vides incomplete information about the errors. For in-

stance, some users of the forecast information would find

the larger location error of case 2 themore serious problem,

while others would say that it is the larger frequency bias of

case 5. But, if jdXfinalj and ASSIM (or its components) are

used together in a multivariate measure as we propose, the

location error component correctly indicates that the lo-

cation error is larger in case 2, while ASSIM correctly in-

dicates that the frequency bias is larger in case 5.

(iii) Can the method diagnose the aspect ratio error
in case 4?

As discussed earlier, ASSIM captures the aspect ratio

error as a general structure error, but cannot specify its type.

FIG. 3. Illustration of the steps of the morphing technique of HS16 for the idealized example of Fig. 1.

TABLE 1. Summary of the results for the idealized ICP cases.

Case Description of error dXfinal (pixel, pixel) Damp Dvar Dcor D

geom001 50-pixel displacement in x direction (250, 0) 1 1 1 1

geom002 200-pixel displacement in x direction (2200, 0) 1 1 1 1

geom003 125-pixel displacement in x direction,

area error

(2129, 0) 0.468 0.812 0.491 0.571

geom004 125-pixel displacement in x direction,

wrong aspect ratio

(2121, 0) 1 1 0.31 0.677

geom005 125-pixel displacement in x direction,

large area error but overlapping

(2125, 0) 0.245 0.661 0.301 0.365
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2) REALISTIC CASES

The proposed verification scheme is applied to the 27

ICP cases. A useful feature of the ICP dataset is that

subjective scores are available for all 27 cases

(Ahijevych et al. 2009). These subjective scores are the

averages of scores assigned by each member of a panel

of 26 scientists. Because the panel included meteorolo-

gists, statisticians, and software engineers, the scores

should be considered more a reflection of human per-

ception about the similarity between images than a

consensus of trained experts on forecast quality.

Before turning our attention to the description of the

summary results for all cases, we illustrate the behavior

of the technique on one of the 27 forecasts (Fig. 4): Pf

is a 4-km resolution, 24-h forecast of the 1-h accumula-

tion valid at 0000 UTC 1 June 2005 by the NCEP limited

area model, and Pa is the corresponding stage II pre-

cipitation analysis (Lin and Mitchell 2005). The overall

structure of the main storm system in this forecast is

reasonably well matched, but displaced to the west. We

choose this forecast case because it has been extensively

studied by others (Ahijevych et al. 2009; Wernli et al.

2009; Davis et al. 2009; Marzban et al. 2009; Mittermaier

and Roberts 2010; Lakshmanan and Kain 2010; Gilleland

et al. 2010). Our result for this case (right panel of Fig. 4)

is in agreement with that of Lakshmanan and Kain

(2010), and the shift produced by the morphing-based

technique removes almost completely the location error.

Table 3 presents the correlations between the sub-

jective scores and a number of objective scores that in-

clude ASSIM. In this table, D and D0 are the same as

before (as in Table 2), while Dc is ASSIM after correc-

tion for the location error by shifting the forecast fea-

ture, such that its center of mass is aligned with the

center of mass of the verifying feature. The purpose of

computing Dc in addition to D is to assess the value of

using the morphing-based algorithm rather than a com-

putationally less complex approach for the correction of

the location error. The table shows that the correlation for

D is higher than for the other objective scores, except for

the multiplicative bias, which is a traditional measure of

the amplitude error. In addition, a comparison of the first

TABLE 2. Rankings of the forecasts of the idealized ICP cases with respect to different verification metrics. Asterisks indicate identical

ranks for multiple cases in the same row (for the same metrics).

Metric Reference geom001 geom002 geom003 geom004 geom005

MODE Davis et al. (2009) 1 5 3 4 2

Procrustes Lack et al. (2010) 1 2 3 4 5

DAS Keil and Craig (2009) 1 2 5 4 3

Baddeley’s D Gilleland (2011) 1 5 3 2 4

e Lakshmanan and Kain (2010) 1 2 4 3 5

metry Zhu et al. (2011) 1 5 3 2 4

jdXfinalj 1 5 4 2 3

D0 2* 2* 2* 2* 1

D 1* 1* 4 3 5

FIG. 4. Illustration of a realistic ICP example. Shown are (left) a 24-h forecast of the 1-h precipitation total by the NCEPWRFModel,

(middle) the related Stage II analysis of 1-h accumulation, and (right) the shifted forecast obtained by the proposed morphing technique.

The gray shading in the left and right panels shows the outline of Pa (the field in the middle panel). The black arrow in the right panel

indicates the magnitude and direction of dXfinal (the total shift vector).
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two rows indicates that correcting for the location error

improves the correspondence between ASSIM and the

subjective scores, while a comparison of the second and

third rows indicates that correcting for the location

error leads to a higher correlation with the subjective

scores.

Table 4 presents the correlations between the sub-

jective scores and the components of themulticomponent

measures ASSIM, structure–amplitude–location (SAL)

(Wernli et al. 2009), and DAS (Keil and Craig 2009). The

correlations are the highest for the variance and am-

plitude components of ASSIM, which suggests that

these two error components reflect the human per-

ception of forecast quality the best. Interestingly, the

correlations are low for the location error component

of all threemeasures. This result supports the argument

of Wang and Bovik (2009) that the human visual sys-

tem is less sensitive to small displacement errors than

most objective scores.

c. MesoVICT cases

MesoVICT tier 1 is a set of multiple forecasts of six

forecast cases for a range of meteorological phenomena

in and around the Alps (Dorninger et al. 2013). The

forecast dataset comprises 18-h-long forecasts of the

hourly accumulation of the precipitation from two NWP

models: the Canadian high-resolution model (CMH;

2.5-km resolution) fromEnvironment and Climate Change

Canada and the COSMO2 model (CO2; 2.2-km resolu-

tion) fromMeteoSwiss. The dataset also includes Vienna

Enhanced Resolution Analyses (VERA; 8-km resolu-

tion; Steinacker et al. 2000) for the verification of the

forecasts. The fields of the selected models are provided

as ACSII files interpolated onto the VERA grid. We use

cases 2–5 to compare the forecast performance of the two

models because these are the cases for which the forecasts

with the two models start at the same analysis time. The

total number of forecasts of the hourly accumulation is

212. For a different type of verification of the same cases,

see Geiß (2015) and Gilleland (2017).

Figure 5 shows the analyses (top panel) and the

forecasts started at 0600 UTC 19 July 2007 (middle and

bottom panels) for four consecutive verification times

(from 0800 to 1100 UTC 19 July 2017) for case 2. It also

shows dXfinal (black arrow) and the value of D for each

forecast. While the forecasts from both models exhibit

location errors that can be corrected by a northeast shift of

the precipitation features, the magnitude of the location

errors is clearly larger for the CMH than the CO2 model.

In addition, the value of ASSIM after the correction for

the location error,D, is slightly lower for the CMHmodel

in all cases, which indicates that the amplitude and

structure error is also somewhat larger for that model.

Figure 6, which shows the histogram of ASSIM values

D after the correction of the location errors, also supports

the conclusion that the CO2 model performs better than

the CMHmodel in predicting the amplitude and structure

of the precipitation field for the selected cases (bottom

panel). For instance, ASSIM is found to be higher than

D5 0:7 for 44%of theCO2 forecasts and only for 24%of

the CMH forecasts. The figure also indicates that pre-

dicting the amplitude and structure of a precipitation

event is more difficult in some cases than in others (top

four panels). Interestingly, the high relative frequency at

the tails of the histogram for case 2 indicates that both

models produce the largest number of unusually accurate

and poor forecasts of the amplitude and the structure for

case 2.

4. Precipitation associated with winter storms

The results of this section are based on forecasts of the

32 U.S. winter storms that were named by The Weather

Channel in the 2014/15 and 2015/16 storm seasons.

While The Weather Channel does not provide a rigor-

ous formal definition of the criteria for naming storms,

TABLE 3. The correlations between the subjective scores and

a number of objective measures for the ICP realistic cases. We use

the values of the subjective score, ETS, and multiplicative bias as

they were reported by Keil and Craig (2009) for our calculations.

DAS is the displacement and amplitude score proposed by Keil

and Craig (2009), ETS is the equitable threat score, and multipli-

cative bias is the amplitude error.

Measure Correlation

D0 0.26

D 0.47

Dc 0.32

DAS 0.26

ETS 0.41

Multiplicative bias 0.53

TABLE 4. The correlations between the subjective scores and

the components of the multicomponent measures ASSIM, SAL

(Wernli et al. 2009), and DAS (Keil and Craig 2009).

Measure Type Correlation

ASSIM before correction

of location

D0
cor Structure 0.17

ASSIM after correction

of location

Dcor Structure 0.37

Dvar Structure 0.60

Damp Amplitude 0.56

jdXfinalj Location 0.23

DAS AMP Amplitude 0.25

DIS Location 0.05

SAL jSj Structure 20.23

jAj Amplitude 0.47

L Location 0.13
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the named storms provide a representative collection of

synoptic-scale precipitation events with potentially high

socioeconomic impact. The operational forecasts are

twice-daily global medium-range forecasts started at

0000 and 1200 UTC from the National Centers for En-

vironmental Prediction (NCEP), while the verifying

analyses are Stage IV precipitation analyses over land

and operational 0–6-h precipitation forecasts from the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) over ocean. We homogenize the veri-

fication data from the two sources by a calibration of

the ECMWF data. This calibration is done such that the

amplitude and the variance of the precipitation in the

ECMWF data become equal to that of the Stage IV data

for the locations where data are available from both

sources. At those locations, the ECMWF data are used

only for the calibration. The spatial resolution of the

forecast and verification dataset is 0.58 3 0.58. Only

those forecast cases are used for the estimation of the

location error for which at least 30% of the total pre-

cipitation in the verification region is from the area

covered by Stage IV data. There are a total of 83 forecast

cases that satisfy this criterion for the 32 storms.

a. Predictability of the location

This example illustrates how the proposed technique

can be used to study the predictability of the location

of a particular type of precipitation feature. Unlike in

the earlier examples, here, we do not have a pre-

determined pair of features in Pf and Pa. Instead, we

have a Pa that includes an observed (analyzed) pre-

cipitation feature of interest and different lead time

forecasts of Pa that may or may not include a related

forecast feature. Our task is to determine for each

forecast Pf whether or not it includes a feature that can

be considered a forecast of the forecast feature of in-

terest in Pa. (In essence, in this application, our tech-

nique is used as an object-based verification approach.)

If Pf includes a matching feature, the task also includes

the computation of the location error for that feature.

We obtain the curve that describes the dependence of

the typical location error on the lead time by averaging

FIG. 5. An example of the verification results for a pair of forecasts from the MesoVICT tier 1 dataset. Shown are (top) the VERA

analyses, (middle) the CMH forecasts, and (bottom) the CO2 forecasts for four consecutive forecast hours. Each column is a different

forecast hour, with time increasing from left to right.
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the magnitude of the estimated location error for all

forecasts of the same lead time.

In this application, we useASSIM as a similarity index

rather than an error measure: the morphing-based al-

gorithm is applied to all forecasts, and a forecast storm is

deemed likely to be related to the verifying storm if

ASSIM, that is, the value of D defined by Eq. (6), is

larger than a prescribed threshold value d after the

correction of the location error. Figure 7 shows the

number of forecasts that satisfy this criteria for the dif-

ferent values of d in the range 0:6# d# 0:8. Qualita-

tively, all curves in the figure behave similarly: as

forecast time increases, the number of storms that satisfy

the search criteria decreases until about forecast time

11 days. Under the assumption that the number of re-

lated forecast events decreases monotonically with the

lead time, the saturation level of these curves (normal-

ized by the total number of forecasts) is an estimate of

the upper bound of the probability that a forecast event

is not related to the verifying event for the given value of

d. For instance, this upper bound is about 40% for

d5 0:6 and 5% for d5 0:8. It could also be pushed to 0%

by further increasing d, but then an increasing number of

events would be found unlikely to be related to the

verifying event, even at the shortest forecast times. For

example, the upper bound becomes 0% at day 10.5 for

both d5 0:85 and d5 0:9 (not shown), but then 15% and

35%, respectively, of the forecast events are found un-

likely to be related to the verifying event at initial time.

Remarkably, the dependence of the number of events

on d does not affect the estimate of the average location

error (Fig. 8): the functional dependence of the average

location error on the forecast lead time is independent

of d in the range 0:6# d# 0:8. This functional de-

pendence qualitatively closely resembles the one that

describes the dependence of the root-mean-square error

FIG. 6. Histogram of the value D of ASSIM after the correction of the location error for

MesoVICT tier 1 cases 2–5. (top four panels) Histogram for the individual cases, and (bot-

tom) histogram for the four cases combined.
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of the Eulerian forecast variables (e.g., geopotential

height of a specific pressure level) on the forecast lead

time (e.g., Fig. 3.11 of Szunyogh 2014). The most widely

used technique (e.g., Magnusson and Källén 2013;

Herrera et al. 2016; �Zagar et al. 2017) for the quantita-

tive analysis of this functional dependence is the Lorenz

curve analysis (Lorenz 1969, 1982; Dalcher and Kalnay

1987). The Lorenz curve analysis technique makes the

assumption that the time evolution of the magnitude E

of the error (E5 jdXfinalj in our case) can be described

by the differential equation

dE

dt
5 (aE1b)

�
12

E

E
‘

�
, (10)

and estimates the parameters a, b, and E‘ by fitting a

2nd-order polynomial to pairs of E, dE/dt values by the

method of least squares. The graphical image of the

fitted polynomial in the E2 dE/dt plane is the Lorenz

curve. In addition, the quality of the fit can be verified by

substituting the estimates of the parameters into the

analytical solution of Eq. (10), which is

E(t)5E
‘
2

E
‘
1b/a

11m(t)
, (11)

where

m(t)5
E

0
1b/a

E
‘
2E

0

exp

��
a1

b

E
‘

�
t

�
. (12)

In Eq. (10),E‘ is the saturation level of themagnitude of

the error: onceE reaches this value, dE/dt becomes zero,

and the error can no longer grow. The forecast time at

which this happens is the predictability limit, the time by

which all forecasts lose their dependence on the (un-

known) true state of the atmosphere at the beginning of

the forecasts. We note that for the Eulerian forecast

variables, E‘ is equal to
ffiffiffi
2

p
times the root-mean-square

distance between pairs of randomly selected but clima-

tologically feasible states of the atmosphere (e.g.,

Leith 1974).

The predictability limit and the behavior of the three

parameters of the Lorenz curve are strongly scale de-

pendent (�Zagar et al. 2017). When the technique is ap-

plied to the full forecast error, that is, not scale

selectively, E‘ is determined by the saturation level of

the errors at the synoptic and large scales. Hence, for the

first few forecast days, E � E‘, and Eq. (10) can be

replaced by the linear differential equation,

dE

dt
5aE1b . (13)

The analytical solution of this differential equation is

E(t)5

�
E

0
1

b

a

�
eat 2b/a , (14)

whereE0 5E(0). Thus, the linear coefficient a describes

the exponential growth of the forecast errors in the

forecast range for which Eq. (13) is valid. The param-

eter b has been conventionally interpreted as the con-

tribution of model errors to the error growth (e.g.,

Dalcher andKalnay 1987;Magnusson andKällén 2013)
because according to Eq. (13), it describes error growth

FIG. 7. Evolutions of the percentage of forecast cases in which a forecast precipitation is

considered similar to the analysis measured by ASSIM. Different curves correspond to dif-

ferent threshold values d of ASSIM.
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that does not require the prior presence of errors in the

forecasts.

The function fitted to the estimates of the magnitude

of the location error and the related Lorenz curve for

d5 0:7 are shown by solid black lines in Fig. 9. The

calculation of the estimated parameters followed the

procedure described in Herrera et al. (2016). To verify

that the estimates of the parameters of the fitted curve

are robust, we also computed a second set of estimates of

the parameters by the technique introduced by �Zagar

et al. (2017). Because this technique is based on esti-

mating the parameters by fitting a curve directly in the

t2E(t) rather than the E(t)2 dE/dt plane, it eliminates

the necessity of computing approximate values of dE/dt.

FIG. 8. Evolutions of themagnitude of location error averaged over the forecast cases selected

using different threshold values d of ASSIM.

FIG. 9. The results of the Lorenz curve analysis for the location error of the precipitation

events associated with the winter storms. Shown are (black triangles) the average magnitude

E of the estimated location errors dXfinal for all forecasts and the fitted curves based on

Eq. (10). The inset shows the related Lorenz curves.
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The fitted curve and the Lorenz curve for this tech-

nique are shown by solid blue lines in the figure. The

actual estimates of the parameters obtained by the

two approaches are presented in Table 5. While there

are some differences between the estimates obtained

by the two different approaches, the relative values

of these differences are small. The fitted curves in-

dicate that the average magnitude of the estimated

location error is about 40 km at initial time, 110 km at

day 1, 250 km at day 3, and 750 km at week 1, and it

saturates at about week 2. Once the magnitude of the

error reaches a saturation level, the accuracy of the

numerical forecast of the location is no better than

that of a randomly generated (but climatologically

feasible) forecast of the location. The quantitative

estimate of the saturation level (E‘), however,

should be interpreted with caution. In our study on

the behavior of ensemble forecast of the same storms

(Han and Szunyogh 2018), we found that beyond the

week 1 forecast lead time, the forecast uncertainty of

the location becomes so large that the probability

that our technique cannot match the forecast feature

to the verifying feature for the selected search region

is nonzero. This effect leads to an underestimation of

the average magnitude of the location error beyond

the week 1 forecast lead time, which becomes more

severe as the forecast lead time increases.

Finally, we note that the estimates eat 5 1:382 1:46

of the short-term error growth are similar to those

obtained by Herrera et al. (2016) for the operational

deterministic forecasts of the meridional wind compo-

nent at 500hPa. Because the location error reflects er-

rors in the prediction of the location of synoptic-scale

features, this result is in agreement with the view that the

dominant growing errors in the short- and medium-

range global forecasts in the extratropics are errors in

the prediction of the position of the synoptic-scale flow

features (e.g., Snyder 1999; Oczkowski et al. 2005).

b. An example

Figures 10 and 11 show the growth of the location

error for Winter Storm Cato. The main precipitation

feature in these forecast cases is a precipitation band

centered at approximately 358N, 788W (middle panels).

In the 108-h forecast (Fig. 10), the precipitation band is

misplaced to the east. The morphing-based technique

removes the misplacement error by shifting the forecast

band by about 570km to the west, leading to an increase

of ASSIM from 0.691 to 0.835. If a threshold value of

d5 0:8 was used, the forecast feature would be consid-

ered likely to be related to the verifying feature.

Figure 11 shows the 180-h forecast of the same pre-

cipitation event. In this case, the morphing technique

shifts the narrow forecast precipitation band in an at-

tempt to match the precipitation system of the verifying

system. The value of ASSIM increases from 0.354 to

0.756 by the shift, but does not reach the threshold value

d5 0:8. Also, the magnitude of the derived shift vector

TABLE 5. The estimated values of the parameters of Eq. (10).

Method of estimation a (day21) eat (t 5 1 day) b (km day21) E‘ (km)

Herrera et al. (2016) 0.32 1.38 41.6 1186
�Zagar et al. (2017) 0.38 1.46 37.1 1139

FIG. 10. Illustration of 108-h forecast ofWinter StormCato. (left) NCEP forecast of the 6-h precipitation total at 0000UTC 26Nov 2014,

(middle) the verifying analysis, and (right) the forecast shifted by dXfinal. The gray shading in the left and right panels shows the outline

of Pa (the field in the middle panel). The black arrow in the right panel is the shift vector (dXfinal) derived out of the morphing

algorithm.
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dX (1270 km) is larger than the location error associated

with the predictability limit (about 1140–1190km),

making it highly unlikely that there is a dynamical re-

lationship between the forecast and the verifying

feature.

5. Conclusions

In this paper, we proposed an improved morphing-

based technique for the verification of precipitation

forecasts for which the location error is well defined and

can be described by a spatial shift (e.g., precipitation

events related to the passage of an extratropical or

tropical cyclone or a form of organized convection). This

technique describes the estimate of the forecast error

by a multivariate measure. One component of the

measure characterizes the location error, while the other

component, which can be broken up into multiple

components, measures the amplitude and structure er-

ror. We introduced a new similarity index called ASSIM

to measure this component of the error. ASSIM is an

adaptation of theWang–Bovik image quality index, and

in addition to using it as an error measure, we also use it

to define the convergence criteria for the morphing

algorithm.

We illustrated the behavior of the new morphing

technique and ASSIM through applications to idealized

and realistic forecast cases. While the results of these

applications are highly encouraging, it is important to

note that in the investigated cases, the verifying pre-

cipitation features and the verification domains around

them were selected manually. An automation of the

technique for the verification of operational real-time

forecasts would require further research into the selec-

tion of the events and the verification domain. In addi-

tion, because the technique considers the precipitation

in the verification domain part of a single precipitation

system, it is not suitable to verify forecasts in a pre-

selected fixed domain if precipitation in different parts

of the domain may not be related (e.g., convective pre-

cipitation with no larger-scale organization).

In one of our examples, we studied the predictability

of the location of U.S. winter storms. It was found that

the functional dependence of the average magnitude of

the location error on the forecast lead time is qualita-

tively similar to that for the other conventional forecast

variables (e.g., geopotential height and temperature).

Quantitatively, the average magnitude of the estimated

location error is about 40 km at initial time, 110 km at

day 1, 250 km at day 3, and 750 km at week 1, and it

eventually saturates at about week 2.

Finally, it should be noted that the proposed tech-

nique could also be used for the verification of other

scalar forecast parameters whose fields have sharp

gradients (e.g., potential vorticity). For such param-

eters, the proposed approach could provide a more

nuanced picture about the evolution of the errors

than an approach based on the root-mean-square

error, which would indicate a sudden and complete

loss of predictability of the parameter after the de-

velopment of a relatively small location error. For

instance, in an ongoing research project, we use the

technique to assess the effect of mesoscale ocean

eddies on the atmospheric state variables along the

Pacific storm track.
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FIG. 11. As in Fig. 10, but for the 180-h forecast of Winter Storm Cato.

MAY 2018 HAN AND SZUNYOGH 1317

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 07:09 PM UTC

http://www.ral.ucar.edu/projects/icp/
http://www.ral.ucar.edu/projects/icp/
http://apps.ecmwf.int/datasets/data/tigge/
https://data.eol.ucar.edu/dataset/21.093
https://data.eol.ucar.edu/dataset/21.093


REFERENCES

Ahijevych, D., E. Gilleland, B. G. Brown, and E. E. Ebert, 2009:

Application of spatial verification methods to idealized and

NWP-gridded precipitation forecasts. Wea. Forecasting, 24,
1485–1497, https://doi.org/10.1175/2009WAF2222298.1.

Dalcher, A., and E. Kalnay, 1987: Error growth and predictability

in operational ECMWF forecasts. Tellus, 39A, 474–491,

https://doi.org/10.3402/tellusa.v39i5.11774.

Davis, C. A., B. G. Brown, R. Bullock, and J. Halley-Gotway, 2009:

The method for object-based diagnostic evaluation (MODE)

applied to numerical forecasts from the 2005 NSSL/SPC

Spring Program. Wea. Forecasting, 24, 1252–1267, https://

doi.org/10.1175/2009WAF2222241.1.

Dorninger, M., M. P. Mittermaier, E. Gilleland, E. E. Ebert, B. G.

Brown, and L. J. Wilson, 2013: MesoVICT: Mesoscale verifica-

tion inter-comparison over complex terrain. NCAR Tech. Note

NCAR/TN-5051STR, 23 pp., https://doi.org/10.5065/D6416V21.

Geiß, S., 2015: Comparison of spatial verification methods. B.A.

thesis,MunichMeteorological Institute, Ludwig-Maximilians-

University, 43 pp.

Gilleland, E., 2011: Spatial forecast verification: Baddeley’s delta

metric applied to the ICP test cases.Wea. Forecasting, 26, 409–

415, https://doi.org/10.1175/WAF-D-10-05061.1.

——, 2017: A new characterization within the spatial verification

framework for false alarms, misses, and overall patterns. Wea.

Forecasting, 32, 187–198, https://doi.org/10.1175/WAF-D-16-0134.1.

——, J. Lindström, and F. Lindgren, 2010: Analyzing the image

warp forecast verification method on precipitation fields from

the ICP. Wea. Forecasting, 25, 1249–1262, https://doi.org/

10.1175/2010WAF2222365.1.

Han, F., and I. Szunyogh, 2016: A morphing-based technique for

the verification of precipitation forecasts. Mon. Wea. Rev.,

144, 295–313, https://doi.org/10.1175/MWR-D-15-0172.1.

——, and ——, 2018: How well can an ensemble predict the un-

certainty in the location of winter storm precipitation? Tellus,

70A, 1440870, https://doi.org/10.1080/16000870.2018.1440870.

Herrera, M. A., I. Szunyogh, and J. Tribbia, 2016: Forecast un-

certainty dynamics in the THORPEX Interactive Grand

Global Ensemble (TIGGE).Mon. Wea. Rev., 144, 2739–2766,

https://doi.org/10.1175/MWR-D-15-0293.1.

Keil, C., and G. C. Craig, 2007: A displacement-based error mea-

sure applied in a regional ensemble forecasting system. Mon.

Wea. Rev., 135, 3248–3259, https://doi.org/10.1175/MWR3457.1.

——, and ——, 2009: A displacement and amplitude score em-

ploying an optical flow technique.Wea. Forecasting, 24, 1297–
1308, https://doi.org/10.1175/2009WAF2222247.1.

Lack, S. A., G. L. Limpert, and N. I. Fox, 2010: An object-oriented

multiscale verification scheme. Wea. Forecasting, 25, 79–92,

https://doi.org/10.1175/2009WAF2222245.1.

Lakshmanan, V., and J. S. Kain, 2010: A Gaussian mixture model

approach to forecast verification. Wea. Forecasting, 25, 908–

920, https://doi.org/10.1175/2010WAF2222355.1.

Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon.

Wea. Rev., 102, 409–418, https://doi.org/10.1175/1520-

0493(1974)102,0409:TSOMCF.2.0.CO;2.

Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly pre-

cipitation analyses: Development and applications. 19th Conf. on

Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://

ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

Lorenz, E. N., 1969: Atmospheric predictability as revealed by nat-

urally occurring analogues. J. Atmos. Sci., 26, 636–646, https://

doi.org/10.1175/1520-0469(1969)26,636:APARBN.2.0.CO;2.

——, 1982: Atmospheric predictability experiments with a large

numerical model. Tellus, 34, 505–513, https://doi.org/10.3402/

tellusa.v34i6.10836.

Magnusson, L., and E. Källén, 2013: Factors influencing skill im-

provements in the ECMWF forecasting system. Mon. Wea.

Rev., 141, 3142–3153, https://doi.org/10.1175/MWR-D-12-

00318.1.

Marzban, C., S. Sandgathe, H. Lyons, and N. Lederer, 2009: Three

spatial verification techniques: Cluster analysis, variogram,

and optical flow. Wea. Forecasting, 24, 1457–1471, https://

doi.org/10.1175/2009WAF2222261.1.

Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial

forecast verification methods: Identifying skillful spatial scales

using the fractions skill score. Wea. Forecasting, 25, 343–354,

https://doi.org/10.1175/2009WAF2222260.1.

Mo, R., C. Ye, and P. H. Whitfield, 2014: Application potential of

four nontraditional similarity metrics in hydrometeorology.

J. Hydrometeor., 15, 1862–1880, https://doi.org/10.1175/JHM-

D-13-0140.1.

Oczkowski, M., I. Szunyogh, and D. Patil, 2005: Mechanisms for

the development of locally low-dimensional atmospheric dy-

namics. J. Atmos. Sci., 62, 1135–1156, https://doi.org/10.1175/

JAS3403.1.

Snyder, C., 1999: Error growth in flows with finite-amplitude waves

or coherent structures. J. Atmos. Sci., 56, 500–506, https://

doi.org/10.1175/1520-0469(1999)056,0500:EGIFWF.2.0.CO;2.

Steinacker, R., C. Häberli, and W. Pöttschacher, 2000: A

transparent method for the analysis and quality evaluation

of irregularly distributed and noisy observational data.

Mon. Wea. Rev., 128, 2303–2316, https://doi.org/10.1175/

1520-0493(2000)128,2303:ATMFTA.2.0.CO;2.

Szunyogh, I., 2014:Applicable Atmospheric Dynamics: Techniques

for the Exploration of Atmospheric Dynamics. World Scien-

tific, 608 pp.

Venugopal, V., S. Basu, and E. Foufoula-Georgiou, 2005: A new

metric for comparing precipitation patterns with an applica-

tion to ensemble forecasts. J. Geophys. Res., 110, D08111,

https://doi.org/10.1029/2004JD005395.

Wang,Z., andA.C.Bovik, 2002:Auniversal image quality index. IEEE

Signal Process. Lett., 9, 81–84, https://doi.org/10.1109/97.995823.

——, and ——, 2009: Mean squared error: Love it or leave it? A

new look at signal fidelity measures. IEEE Signal Process.

Mag., 26, 98–117, https://doi.org/10.1109/MSP.2008.930649.

——,——, H. R. Sheikh, and E. P. Simoncelli, 2004: Image quality

assessment: From error visibility to structural similarity. IEEE

Trans. Image Process., 13, 600–612, https://doi.org/10.1109/

TIP.2003.819861.

Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—Anovel

quality measure for the verification of quantitative pre-

cipitation forecasts. Mon. Wea. Rev., 136, 4470–4487, https://

doi.org/10.1175/2008MWR2415.1.

——, C. Hofmann, and M. Zimmer, 2009: Spatial forecast verifi-

cation methods intercomparison project: Application of the

SAL technique. Wea. Forecasting, 24, 1472–1484, https://

doi.org/10.1175/2009WAF2222271.1.
�Zagar, N., M. Horvat, �Z. Zaplotnik, and L. Magnusson, 2017:

Scale-dependent estimates of the growth of forecast un-

certainties in a global prediction system. Tellus, 69A, 1287492,

https://doi.org/10.1080/16000870.2017.1287492.

Zhu, M., V. Lakshmanan, P. Zhang, Y. Hong, K. Cheng, and S. Chen,

2011: Spatial verification using a true metric. Atmos. Res., 102,

408–419, https://doi.org/10.1016/j.atmosres.2011.09.004.

1318 MONTHLY WEATHER REV IEW VOLUME 146

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 07:09 PM UTC

https://doi.org/10.1175/2009WAF2222298.1
https://doi.org/10.3402/tellusa.v39i5.11774
https://doi.org/10.1175/2009WAF2222241.1
https://doi.org/10.1175/2009WAF2222241.1
https://doi.org/10.5065/D6416V21
https://doi.org/10.1175/WAF-D-10-05061.1
https://doi.org/10.1175/WAF-D-16-0134.1
https://doi.org/10.1175/2010WAF2222365.1
https://doi.org/10.1175/2010WAF2222365.1
https://doi.org/10.1175/MWR-D-15-0172.1
https://doi.org/10.1080/16000870.2018.1440870
https://doi.org/10.1175/MWR-D-15-0293.1
https://doi.org/10.1175/MWR3457.1
https://doi.org/10.1175/2009WAF2222247.1
https://doi.org/10.1175/2009WAF2222245.1
https://doi.org/10.1175/2010WAF2222355.1
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm
https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.3402/tellusa.v34i6.10836
https://doi.org/10.3402/tellusa.v34i6.10836
https://doi.org/10.1175/MWR-D-12-00318.1
https://doi.org/10.1175/MWR-D-12-00318.1
https://doi.org/10.1175/2009WAF2222261.1
https://doi.org/10.1175/2009WAF2222261.1
https://doi.org/10.1175/2009WAF2222260.1
https://doi.org/10.1175/JHM-D-13-0140.1
https://doi.org/10.1175/JHM-D-13-0140.1
https://doi.org/10.1175/JAS3403.1
https://doi.org/10.1175/JAS3403.1
https://doi.org/10.1175/1520-0469(1999)056<0500:EGIFWF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<0500:EGIFWF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2303:ATMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2303:ATMFTA>2.0.CO;2
https://doi.org/10.1029/2004JD005395
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1175/2008MWR2415.1
https://doi.org/10.1175/2008MWR2415.1
https://doi.org/10.1175/2009WAF2222271.1
https://doi.org/10.1175/2009WAF2222271.1
https://doi.org/10.1080/16000870.2017.1287492
https://doi.org/10.1016/j.atmosres.2011.09.004

